- Home
- Standard 11
- Mathematics
4-1.Complex numbers
hard
यदि $|1-i|^x=2^x$ के हलों की संख्या $\alpha$ है तथा $\beta=\left(\frac{|\mathrm{z}|}{\arg (\mathrm{z})}\right)$ है, जहाँ $\mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^4\left(\frac{1-\sqrt{\pi} \mathrm{i}}{\sqrt{\pi}+\mathrm{i}}+\frac{\sqrt{\pi}-\mathrm{i}}{1+\sqrt{\pi} \mathrm{i}}\right), \mathrm{i}=\sqrt{-1}$ है, तो रेखा $4 x-3 y=7$ से बिंदु $(\alpha, \beta)$ की दूरी है................
A
$2$
B
$3$
C
$4$
D
$5$
(JEE MAIN-2024)
Solution
$(\sqrt{2})^x=2^x \Rightarrow x=0 \Rightarrow \alpha=1$
$z=\frac{\pi}{4}(1+i)^4\left[\frac{\sqrt{\pi}-\pi i-i-\sqrt{\pi}}{\pi+1}+\frac{\sqrt{\pi}-i-\pi i-\sqrt{\pi}}{1+\pi}\right]$
$=-\frac{\pi i}{2}\left(1+4 i+6 i^2+4 i^3+1\right)$
$=2 \pi i$
$\beta=\frac{2 \pi}{\frac{\pi}{2}}=4$
Distance from $(1,4)$ to $4 x-3 y=7$
Will be $\frac{15}{5}=3$
Standard 11
Mathematics