If ${\log _{10}}2 = 0.30103,{\log _{10}}3 = 0.47712,$ the number of digits in ${3^{12}} \times {2^8} $ is

  • A

    $7$

  • B

    $8$

  • C

    $9$

  • D

    $10$

Similar Questions

If $a = {\log _{24}}12,\,b = {\log _{36}}24$ and $c = {\log _{48}}36,$ then $1+abc$ is equal to

If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval

$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to

If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is

If  ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ then