The number of real values of the parameter $k$ for which ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ with real coefficients will have exactly one solution is

  • A

    $2$

  • B

    $1$

  • C

    $4$

  • D

    None of these

Similar Questions

If ${1 \over 2} \le {\log _{0.1}}x \le 2$ then

The number of solution of ${\log _2}(x + 5) = 6 - x$ is

If ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, then relation between $a$ and $b$ will be

If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then

Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$  Then, the possible value(s) of $\frac{x}{y}$

  • [KVPY 2020]