Gujarati
Basic of Logarithms
hard

Let $a, b, x$ be positive real numbers with $a \neq 1$, $x \neq 1$, ab $\neq 1$. Suppose $\log _{ a } b =10$, and $\frac{\log _{ a } x \log _{ x }\left(\frac{ b }{ a }\right)}{\log _{ x } b \log _{ ab } x }=\frac{ p }{ q }$, where $p$ and $q$ are positive integers which are coprime. Then $p+q$ is

A

$9$

B

$99$

C

$109$

D

$199$

(KVPY-2021)

Solution

(c)

$\frac{p}{q}=\frac{\log _a x \cdot \log _x\left(\frac{b}{a}\right)}{\log _x b \cdot \log _{a b} x}$

$\frac{ p }{ q }=\frac{\frac{(\log b -\log a)}{\log a}}{\frac{\log b }{(\log a+\log b)}}$$\frac{ p }{ q }=\frac{(\log b )^2-(\log a)^2}{(\log a)(\log b )}$

Given $\log _{ a } b =10 \Rightarrow \log b =10 \log a$

$\frac{ p }{ q }=\frac{(100-1)(\log a)^2}{10(\log a)^2}=\frac{99}{10}$

$p+q=109$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.