જો ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}} $ તો આપલે પૈકી . . . સત્ય છે.
$xyz = 1$
${x^a}{y^b}{z^c} = 1$
${x^{b + c}}{y^{c + a}}{z^{a + b}} = 1$
ઉપરોક્ત બધાજ
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)= . . . .$
$32\root 5 \of 4 $ to the base $2\sqrt 2 = . . . .$
જો ${\log _{10}}x = y,$ તો ${\log _{1000}}{x^2}= . . .$ .
જો ${\log _{10}}x + {\log _{10}}\,y = 2$ હોય તો $(x + y)$ ની ન્યૂનતમ શકય કિમત મેળવો
જો $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ તો