જો ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}} $ તો આપલે પૈકી . . . સત્ય છે.

  • A

    $xyz = 1$

  • B

    ${x^a}{y^b}{z^c} = 1$

  • C

    ${x^{b + c}}{y^{c + a}}{z^{a + b}} = 1$

  • D

    ઉપરોક્ત બધાજ

Similar Questions

$\log ab - \log |b| = $

જો ${\log _4}5 = a$ અને ${\log _5}6 = b $ તો ${\log _3}2= . . . .$

જો ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ તો $x$ નો અંતરાલ મેળવો.

જો ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ હોય તો 

જો $x, y, z \in R^+$ એવા છે કે જેથી $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ અને ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ થાય તો ${\log _x}z$ ની કિમત મેળવો .