If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be
$2$
$3$
$3.5$
$\pi $
The value of $\sqrt {(\log _{0.5}^24)} $ is
$\sum\limits_{r = 1}^{89} {{{\log }_3}(\tan \,\,{r^o})} = $
The value of $(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots . to \infty\right)}$ is equal to
If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval
If ${\log _{10}}x = y,$ then ${\log _{1000}}{x^2} $ is equal to