If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be
$2$
$3$
$3.5$
$\pi $
If ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}},$ then which of the following is true
If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in
If ${a^x} = b,{b^y} = c,{c^z} = a,$ then value of $xyz$ is
Solution set of inequality ${\log _{10}}({x^2} - 2x - 2) \le 0$ is
The sum $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}$ is equal to :