If $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$, then $xyz$ is

  • A

    $0$

  • B

    $1$

  • C

    $3$

  • D

    None of these

Similar Questions

$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $

The value of $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \ldots}}}\right)$ is

  • [IIT 2012]

If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ then $x$ lies in the interval

If ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, then relation between $a$ and $b$ will be

If ${x^{{3 \over 4}{{({{\log }_3}x)}^2} + {{\log }_3}x - {5 \over 4}}} = \sqrt 3 $ then $x$ has