જો $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$ તો $xyz = . . . .$
$0$
$1$
$3$
એકપણ નહી.
જો ${\log _4}5 = a$ અને ${\log _5}6 = b $ તો ${\log _3}2= . . . .$
વાસ્તવિક સંખ્યા $k$ ની કેટલી કિમત માટે વાસ્તવિક સહગુણકો ધરાવતા સમીકરણ ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ નો માત્ર એક્જ ઉકેલ મળે.
સરવાળો $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}= ..............$
જો ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ તો $x$ એ .. . .. .
જો $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?