જો ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ તો
$x = y = z = a/3$
$x + y + z = a/3$
$x + y + z = 0$
એકપણ નહીં
જો ${2^x} = {4^y} = {8^z}$ અને $xyz = 288,$ તો ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $
${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $
${a^{m{{\log }_a}n}} = $
સમીકરણ ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$ નો ઉકેલ મેળવો.
$9\sqrt 3 + 11\sqrt 2 $ નું ઘનમૂળ મેળવો.