જો ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ તો
$x = y = z = a/3$
$x + y + z = a/3$
$x + y + z = 0$
એકપણ નહીં
${{15} \over {\sqrt {10} + \sqrt {20} + \sqrt {40} - \sqrt 5 - \sqrt {80} }} = . . . $
જો ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ તો $xyz=$
સમીકરણ ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$ નો ઉકેલ મેળવો.
જો ${({a^m})^n} = {a^{{m^n}}}$, તો $'m'$ ને $'n'$ ના સ્વરૂપ માં મેળવો.
$\root 4 \of {(17 + 12\sqrt 2 )} = $