Basic of Logarithms
medium

If ${x^y} = {y^x},$then ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ where $k = $

A

$0$

B

$1$

C

$-1$

D

None of these

Solution

(b) ${x^y} = {y^x} \Rightarrow {({x^y})^{1/x}} = y$

Now, ${\left( {{x \over y}} \right)^{x/y}} = {\left( {{x \over {{x^{y/x}}}}} \right)^{x/y}} = {\left( {{x^{1\, – \,{y \over x}}}} \right)^{x/y}}$

$={x^{(x/y) – 1}} = {x^{(x/y) – k}} \Rightarrow k = 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.