If ${x^y} = {y^x},$then ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ where $k = $

  • A

    $0$

  • B

    $1$

  • C

    $-1$

  • D

    None of these

Similar Questions

If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $

If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then

${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $

${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$

${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $