If $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ then $3{x^2} + 4xy - 3{y^2} = $

  • A

    ${1 \over 3}[56\sqrt {10} - 12]$

  • B

    ${1 \over 3}[56\sqrt {10} + 12]$

  • C

    ${1 \over 3}[56 + 12\sqrt {10} ]$

  • D

    None of these

Similar Questions

$\root 4 \of {(17 + 12\sqrt 2 )} = $

${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $

The greatest number among $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17}  $ is

The cube root of $9\sqrt 3 + 11\sqrt 2 $ is

If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is