If $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ then $3{x^2} + 4xy - 3{y^2} = $

  • A

    ${1 \over 3}[56\sqrt {10} - 12]$

  • B

    ${1 \over 3}[56\sqrt {10} + 12]$

  • C

    ${1 \over 3}[56 + 12\sqrt {10} ]$

  • D

    None of these

Similar Questions

If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$

Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are

If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=

The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $

The greatest number among $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17}  $ is