જો $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ તો $3{x^2} + 4xy - 3{y^2} = $
${1 \over 3}[56\sqrt {10} - 12]$
${1 \over 3}[56\sqrt {10} + 12]$
${1 \over 3}[56 + 12\sqrt {10} ]$
એકપણ નહીં
જો ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ તો $xyz=$
$\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $
${{\sqrt {(5/2)} + \sqrt {(7 - 3\sqrt 5 )} } \over {\sqrt {(7/2)} + \sqrt {(16 - 5\sqrt 7 )} }}=$
જો ${({a^m})^n} = {a^{{m^n}}}$, તો $'m'$ ને $'n'$ ના સ્વરૂપ માં મેળવો.
${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $