જો $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ તો $3{x^2} + 4xy - 3{y^2} = $
${1 \over 3}[56\sqrt {10} - 12]$
${1 \over 3}[56\sqrt {10} + 12]$
${1 \over 3}[56 + 12\sqrt {10} ]$
એકપણ નહીં
જો ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ અને ${b^2} = ac$ તો $x + z = $
જો $x = 3 - \sqrt {5,} $ તો ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
સમીકરણ ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ નો ઉકેલ મેળવો.
${{\sqrt {(5/2)} + \sqrt {(7 - 3\sqrt 5 )} } \over {\sqrt {(7/2)} + \sqrt {(16 - 5\sqrt 7 )} }}=$
જો $x = \sqrt 7 + \sqrt 3 $ અને $xy = 4,$ તો ${x^4} + {y^4}=$