यदि $z$ एक सम्मिश्र संख्या हो, तो $(\overline {{z^{ - 1}}} )(\overline z ) = $
$1$
$-1$
$0$
इनमें से कोई नहीं
$\left( {\frac{{3 + 2i}}{{3 - 2i}}} \right)$ का मापांक होगा
समीकरण $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$को संतुष्ट करने वाली सम्मिश्र संख्या है
यदि ${z_1}$ तथा ${z_2}$दो अशून्य सम्मिश्र संख्याएँ ऐसी हों कि $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ हो, तब कोणांक $({z_1}) - $कोणांक $({z_2})$ का मान है
माना कि $|z|^3+2 z^2+4 \bar{z}-8=0$ को संतुष्ट करने वाली एक सम्मिश्र संख्या (complex number) $z$ है, जहाँ $\bar{z}$ सम्मिश्र संख्या $z$ का संयुग्मी (conjugate) है। माना कि $z$ का काल्पनिक भाग (imaginary part) अशून्य (nonzero) है।
List-$I$ की प्रत्येक प्रविष्टि (entry) का List-$II$ की सही प्रविष्टियों (entries) से मिलान कीजिये।
List-$I$ | List-$II$ |
($P$) $|z|^2$ के बराबर हैं | ($1$) $12$ |
($Q$) $|z-\bar{z}|^2$ के बराबर हैं | ($2$) $4$ |
($R$) $|z|^2+|z+\bar{z}|^2$ के बराबर हैं | ($3$) $8$ |
($S$) $|z+1|^2$ के बराबर हैं | ($4$) $10$ |
($5$) $7$ |
सही विकल्प है:
$ - 1 - i\sqrt 3 $ का कोणांक है