यदि $\frac{{z - i}}{{z + i}}(z \ne - i)$ एक पूर्णत: अधिकल्पित संख्या है, तब $z.\bar z$ बराबर है
$0$
$1$
$2$
इनमें से कोई नहीं
यदि ${z_1}$ तथा ${z_2}$दो अशून्य सम्मिश्र संख्याएँ ऐसी हों कि $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ हो, तब कोणांक $({z_1}) - $कोणांक $({z_2})$ का मान है
यदि $z _1$ तथा $z _2$ दो सम्मिश्र संख्याऐं इस प्रकार है कि $\overline{ z }_1= i \overline{ z }_2$ तथा $\arg \left(\frac{ z _1}{\overline{ z }_2}\right)=\pi$ है। तब $-$
यदि $a >0$ तथा $z =\frac{(1+ i )^{2}}{ a - i }$ का परिमाण (magnitude) $\sqrt{\frac{2}{5}}$ है, तो $\overline{ z }$ बराबर है
यदि समीकरण $x ^{2}+ bx +45=0,( b \in R )$ के संयुग्मी सम्मिश्र मूल हैं, जो $|z+1|=2 \sqrt{10}$ को संतुष्ट करते हैं, तो
यदि $z$ एक ऐसी सम्मिश्र संख्या हो कि ${z^2} = {(\bar z)^2}$, तो