Amplitude of $\left( {\frac{{1 - i}}{{1 + i}}} \right)$ is
$-\pi\over2$
$\pi\over2$
$\pi\over4$
$\pi\over6$
If $|z|\, = 4$ and $arg\,\,z = \frac{{5\pi }}{6},$then $z =$
If ${z_1},{z_2},{z_3}$ are complex numbers such that $|{z_1}|\, = \,|{z_2}|\, = $ $\,|{z_3}|\, = $ $\left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1\,,$ then${\rm{ }}|{z_1} + {z_2} + {z_3}|$ is
If $z=x+i y, x y \neq 0$, satisfies the equation $z^2+i \bar{z}=0$, then $\left|z^2\right|$ is equal to:
If ${z_1}$ and ${z_2}$ are two complex numbers satisfying the equation $\left| \frac{z_1 +z_2}{z_1 - z_2} \right|=1$, then $\frac{{{z_1}}}{{{z_2}}}$ is a number which is
The number of solutions of the equation ${z^2} + \bar z = 0$ is