4-1.Complex numbers
normal

If $z$ is a complex number, then which of the following is not true

A

$|{z^2}|\, = \,|z{|^2}$

B

$|{z^2}|\, = \,|\bar z{|^2}$

C

$z = \bar z$

D

${\bar z^2} = {\bar z^2}$

Solution

(c)$L.H.S.$= $|{z^2}|\, = \,|{(x + iy)^2}|$
$ = \,\,|{x^2} – {y^2} + 2ixy| = \sqrt {{{({x^2} – {y^2})}^2} + {{(2xy)}^2}} $
$ = \sqrt {{{\left( {{x^2} + {y^2}} \right)}^2}} $…..$(i)$
$R.H.S.$ $ = |z{|^2} = |x + iy{|^2} = \sqrt {{{({x^2} + {y^2})}^2}} $
$ = {x^2} + {y^2}$ ……$(ii)$
Therefore $|{z^2}| = |z{|^2}$
$(b)$ True $ (c)$  False (since $z \ne \overline z $ ).

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.