Let $\mathrm{z}$ be a complex number such that $|\mathrm{z}+2|=1$ and $\operatorname{Im}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$. Then the value of $|\operatorname{Re}(\overline{z+2})|$ is :

  • [JEE MAIN 2024]
  • A

     $\frac{\sqrt{6}}{5}$

  • B

    $\frac{1+\sqrt{6}}{5}$

  • C

    $\frac{24}{5}$

  • D

    $\frac{2 \sqrt{6}}{5}$

Similar Questions

If $(3 + i)z = (3 - i)\bar z,$then complex number $z$ is

If $z$ is a complex number satisfying $|z|^2 - |z| - 2 < 0$, then the value of $|z^2 + z sin \theta|$ , for all values of $\theta$ , is

For any two complex numbers ${z_1}$and${z_2}$ and any real numbers $a$ and $b$; $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $

  • [IIT 1988]

Find the modulus and argument of the complex numbers:

$\frac{1+i}{1-i}$

Let $z_1, z_2 \in C$ such that $| z_1 + z_2 |= \sqrt 3$ and $|z_1| = |z_2| = 1,$ then the value of $|z_1 - z_2|$ is