4-1.Complex numbers
medium

Let $\mathrm{z}$ be a complex number such that $|\mathrm{z}+2|=1$ and $\operatorname{Im}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$. Then the value of $|\operatorname{Re}(\overline{z+2})|$ is :

A

 $\frac{\sqrt{6}}{5}$

B

$\frac{1+\sqrt{6}}{5}$

C

$\frac{24}{5}$

D

$\frac{2 \sqrt{6}}{5}$

(JEE MAIN-2024)

Solution

$ |z+2|=1, \operatorname{Im}\left(\frac{z+1}{z+2}\right)=\frac{1}{5} $

$ \text { Let } z+2=\cos \theta+i \sin \theta $

$ \frac{1}{z+2}=\cos \theta-i \sin \theta $

$ \Rightarrow \frac{z+1}{z+2}=1-\frac{1}{z+2}=1-(\cos \theta-i \sin \theta) $

$ =(1-\cos \theta)+\operatorname{isin} \theta $

$ \operatorname{Im}\left(\frac{z+1}{z+2}\right)=\sin \theta, \sin \theta=\frac{1}{5} $

$ \cos \theta= \pm \sqrt{1-\frac{1}{25}}= \pm \frac{2 \sqrt{6}}{5} $

$ |\operatorname{Re}(\overline{z+2})|=\frac{2 \sqrt{6}}{5}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.