यदि $|{z_1}| = |{z_2}| = .......... = |{z_n}| = 1,$ तो $|{z_1} + {z_2} + {z_3} + ............. + {z_n}|$=
$1$
$|{z_1}| + |{z_2}| + ....... + |{z_n}|$
$\left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + ......... + \frac{1}{{{z_n}}}} \right|$
उपरोक्त में से कोई नहीं
यदि $(3 + i)z = (3 - i)\bar z,$ तब सम्मिश्र संख्या $z$ है
किन्हीं दो सम्मिश्र संख्याओं ${z_1}$,${z_2}$तथा वास्तविक संख्याओं $a$ तथा $b$ के लिये $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $
$\left| {\frac{1}{2}({z_1} + {z_2}) + \sqrt {{z_1}{z_2}} } \right| + \left| {\frac{1}{2}({z_1} + {z_2}) - \sqrt {{z_1}{z_2}} } \right|$ =
माना $S=\left\{z \in C : z^2+\bar{z}=0\right\}$. है। तब $\sum_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ बराबर है $.........$
समीकरण $|z| - z = 1 + 2i$ का हल है