यदि ${z_1}$ तथा ${z_2}$दो अशून्य सम्मिश्र संख्याएँ ऐसी हों कि $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ हो, तब कोणांक $({z_1}) - $कोणांक $({z_2})$ का मान है
$ - \pi $
$ - \frac{\pi }{2}$
$\frac{\pi }{2}$
$0$
मानाकि $z_k=\cos \left(\frac{2 k \pi}{10}\right)+ i \sin \left(\frac{2 k \pi}{10}\right) ; k=1,2, \ldots 9$
List $I$ | List $II$ |
$P.$ प्रत्येक $z _{ k }$ के लिए एक ऐसा $z _{ j }$ है जिसके लिये $z _{ k } \cdot z _{ j }=1$ | $1.$ सत्य |
$Q.$ $\{1,2, \ldots, 9\}$ में एक ऐसा $k$ है कि $z _1 . z = z _{ k }$ का कोई हल $z$ सम्मिश्र संख्याओं (complex numbers) में नहीं है | $2.$ असत्य |
$R.$ $\frac{\left|1-z_1\right|\left|1-z_2\right| \ldots . . .\left|1-z_9\right|}{10}$ का मान है- | $3.$ $1$ |
$S.$ $1-\sum_{ k =1}^9 \cos \left(\frac{2 k \pi}{10}\right)$ का मान है- | $4.$ $2$ |
Codes: $ \quad P \quad Q \quad R \quad S$
यदि$z = \frac{{1 - i\sqrt 3 }}{{1 + i\sqrt 3 }},$तब कोणांक $(z) = $ .............. $^\circ$
यदि $arg\,z < 0$ तब $arg\,( - z) - arg\,(z)$ का मान होगा
यदि $z$ तथा किसी दूसरी सम्मिश्र संख्या के कोणांक का योग $\pi $ हो, तब दूसरी सम्मिश्र संख्या को लिखा जा सकता है
माना $w(\operatorname{Im} w \neq 0)$ एक सम्मिश्र संख्या है, तो सभी सम्मिश्र संख्याओं $z$ का समुच्चय, जो किसी वास्तविक संख्या $k$ के लिए, समीकरण $w -\overline{ w } z = k (1-z)$ को संतुष्ट करता है