यदि $z_1$ तथा ${z_2}$ दो सम्मिश्र संख्याएँ इस प्रकार हैं कि $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ तथा $i{z_1} = k{z_2}$, जहाँ $k \in R$, तब${z_1} - {z_2}$ तथा ${z_1} + {z_2}$ के मध्य कोण है
${\tan ^{ - 1}}\left( {\frac{{2k}}{{{k^2} + 1}}} \right)$
${\tan ^{ - 1}}\left( {\frac{{2k}}{{1 - {k^2}}}} \right)$
-$2{\tan ^{ - 1}}k$
$2{\tan ^{ - 1}}k$
सम्मिश्र संख्या $\frac{1+2 i}{1-3 i}$ का मापांक और कोणांक ज्ञात कीजिए।
यदि $|1-i|^x=2^x$ के हलों की संख्या $\alpha$ है तथा $\beta=\left(\frac{|\mathrm{z}|}{\arg (\mathrm{z})}\right)$ है, जहाँ $\mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^4\left(\frac{1-\sqrt{\pi} \mathrm{i}}{\sqrt{\pi}+\mathrm{i}}+\frac{\sqrt{\pi}-\mathrm{i}}{1+\sqrt{\pi} \mathrm{i}}\right), \mathrm{i}=\sqrt{-1}$ है, तो रेखा $4 x-3 y=7$ से बिंदु $(\alpha, \beta)$ की दूरी है................
समीकरण $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$को संतुष्ट करने वाली सम्मिश्र संख्या है
यदि ${(\sqrt 8 + i)^{50}} = {3^{49}}(a + ib)$, तब ${a^2} + {b^2}$ =
माना $w(\operatorname{Im} w \neq 0)$ एक सम्मिश्र संख्या है, तो सभी सम्मिश्र संख्याओं $z$ का समुच्चय, जो किसी वास्तविक संख्या $k$ के लिए, समीकरण $w -\overline{ w } z = k (1-z)$ को संतुष्ट करता है