- Home
- Standard 11
- Mathematics
यदि $z_1$ तथा ${z_2}$ दो सम्मिश्र संख्याएँ इस प्रकार हैं कि $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ तथा $i{z_1} = k{z_2}$, जहाँ $k \in R$, तब${z_1} - {z_2}$ तथा ${z_1} + {z_2}$ के मध्य कोण है
${\tan ^{ - 1}}\left( {\frac{{2k}}{{{k^2} + 1}}} \right)$
${\tan ^{ - 1}}\left( {\frac{{2k}}{{1 - {k^2}}}} \right)$
-$2{\tan ^{ - 1}}k$
$2{\tan ^{ - 1}}k$
Solution
(c) $\left| {\frac{{{z_1} – {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$
$⇒\frac{{{z_1} – {z_2}}}{{{z_1} + {z_2}}} = \cos \alpha + i\sin \alpha $
$\frac{{2{z_1}}}{{ – 2{z_2}}} = \frac{{\cos \alpha + i\sin \alpha + 1}}{{\cos \alpha – 1 + i\sin \alpha }}$
(योगान्तरानुपात से)
$⇒\frac{{{z_1}}}{{{z_2}}} = i\cot \frac{\alpha }{2}$
$⇒i{z_1} = – \left( {\cot \frac{\alpha }{2}} \right)\,\,{z_2}$
लेकिन $i{z_1} = k{z_2}⇒ k = – \cot \frac{\alpha }{2}$
अब $k = – \cot \frac{\alpha }{2} \Rightarrow $$\cot \frac{\alpha }{2} = – k$Þ$\tan \alpha = \frac{{ + 2k}}{{{k^2} – 1}}$
$⇒ \tan \alpha = \frac{{ – 2k}}{{1 – {k^2}}}$
$⇒ \alpha = {\tan ^{ – 1}}\left( {\frac{{ – 2k}}{{1 – {k^2}}}} \right) = – 2{\tan ^{ – 1}}k$
अब $\frac{{{z_1} – {z_2}}}{{{z_1} + {z_2}}} = \cos \alpha + i\sin \alpha $
$⇒{z_1} – {z_2}$ एवं ${z_1} + {z_2}$के बीच का कोण $\alpha $ है