4-1.Complex numbers
hard

यदि $z_1$ तथा ${z_2}$ दो सम्मिश्र संख्याएँ इस प्रकार हैं कि $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ तथा $i{z_1} = k{z_2}$, जहाँ $k \in R$, तब${z_1} - {z_2}$ तथा ${z_1} + {z_2}$ के मध्य कोण है

A

${\tan ^{ - 1}}\left( {\frac{{2k}}{{{k^2} + 1}}} \right)$

B

${\tan ^{ - 1}}\left( {\frac{{2k}}{{1 - {k^2}}}} \right)$

C

-$2{\tan ^{ - 1}}k$

D

$2{\tan ^{ - 1}}k$

Solution

(c) $\left| {\frac{{{z_1} – {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$

$⇒\frac{{{z_1} – {z_2}}}{{{z_1} + {z_2}}} = \cos \alpha  + i\sin \alpha $

$\frac{{2{z_1}}}{{ – 2{z_2}}} = \frac{{\cos \alpha  + i\sin \alpha  + 1}}{{\cos \alpha  – 1 + i\sin \alpha }}$

(योगान्तरानुपात से)

$⇒\frac{{{z_1}}}{{{z_2}}} = i\cot \frac{\alpha }{2}$

$⇒i{z_1} =  – \left( {\cot \frac{\alpha }{2}} \right)\,\,{z_2}$

लेकिन $i{z_1} = k{z_2}⇒ k =  – \cot \frac{\alpha }{2}$

अब $k =  – \cot \frac{\alpha }{2} \Rightarrow $$\cot \frac{\alpha }{2} =  – k$Þ$\tan \alpha  = \frac{{ + 2k}}{{{k^2} – 1}}$

$⇒  \tan \alpha  = \frac{{ – 2k}}{{1 – {k^2}}}$

$⇒ \alpha  = {\tan ^{ – 1}}\left( {\frac{{ – 2k}}{{1 – {k^2}}}} \right) =  – 2{\tan ^{ – 1}}k$

अब $\frac{{{z_1} – {z_2}}}{{{z_1} + {z_2}}} = \cos \alpha  + i\sin \alpha $

$⇒{z_1} – {z_2}$ एवं ${z_1} + {z_2}$के बीच का कोण $\alpha $ है

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.