જો ${z_1}.{z_2}........{z_n} = z,$ તો $arg\,{z_1} + arg\,{z_2} + ....$+$arg\,{z_n}$ અને $arg$$z$ ના કોણાંકનો તફાવત . . . .
$\pi $ નો ગુણિત
$\frac{\pi }{2}$ નો ગુણિત
$\pi $ કરતાં મોટા
$\pi $ કરતાં નાના
કોઈ સંકર સંખ્યા $z$ માટે, $ \bar z = \left( {\frac{1}{z}} \right)$ તોજ શક્ય છે જો . . . ..
બે સંકર સંખ્યા ${z_1}$ અને ${z_2}$ છે અને કોઈ વાસ્તવિક સંખ્યા $a$ અને $b$ માટે; $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $
જો ${Z_1} \ne 0$ અને $Z_2$ એવી સંકર સંખ્યા હોય કે જેથી $\frac{{{Z_2}}}{{{Z_1}}}$ શુધ્ધ કાલ્પનિક સંખ્યા થાય તો $\left| {\frac{{2{Z_1} + 3{Z_2}}}{{2{Z_1} - 3{Z_2}}}} \right|$ ની કિમત મેળવો.
જો ${z_1}$ એ સંકર સંખ્યા છે કે જેમાં ( $|{z_1}| = 1$ )અને ${z_2}$ એ સંકર સંખ્યા છે, તો $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $
જો $x+i y=\frac{a+i b}{a-i b},$ તો સાબિત કરો કે $x^{2}+y^{2}=1$