જો $z$ શુદ્ધ વાસ્તવિક સંખ્યા છે કે જેથી ${\mathop{\rm Re}\nolimits} (z) < 0$, તો $arg(z)$ = . . .. .
$\pi $
$\frac{\pi }{2}$
$0$
$ - \frac{\pi }{2}$
વિધાનો
વિધાન $I$: કોઈ બે શુન્યેતર સંકર સંખ્યાઓ $z_1, z_2$
માટે $\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ અને
વિધાન $II$ : જો $x, y, z$ એ ત્રણ ભિન્ન સંકર સંખ્યાઓ હોય તથા $\mathrm{a}, \mathrm{b}, \mathrm{c}$ એ ત્રણ ધન વાસ્તવિક સંખ્યાઓ એવી હોય કે જેથી
$\frac{\mathrm{a}}{|y-z|}=\frac{\mathrm{b}}{|z-x|}=\frac{\mathrm{c}}{|x-y|}$ તો $\frac{\mathrm{a}^2}{y-z}+\frac{\mathrm{b}^2}{z-x}+\frac{\mathrm{c}^2}{x-y}=1$
$\left( {\frac{{1 - i}}{{1 + i}}} \right)$ નો કોણાંક મેળવો.
જો $Z$ અને $W$ એ સંકર સંખ્યા હોય જેથી $\left| Z \right| = \left| W \right|,$ અને arg $Z$ એ $Z$ નો મુખ્ય કોણાંક બતાવતું હોય.
વિધાન $1:$ જો arg $Z+$ arg $W = \pi ,$ તો $Z = -\overline W $.
વિધાન $2:$ $\left| Z \right| = \left| W \right|,$ $\Rightarrow $ arg $Z-$ arg $\overline W = \pi .$
જો $arg\,z < 0$ તો $arg\,( - z) - arg\,(z)$ = . . .
જો $z$ એ સંકર સંખ્યા છે કે જેથી ${z^2} = {(\bar z)^2} $ તો . . .