Let $z,w$be complex numbers such that $\overline z + i\overline w = 0$and $arg\,\,zw = \pi $. Then arg z equals
$5\pi /4$
$\pi /2$
$3\pi /4$
$\pi /4$
If $|z|\, = 1$ and $\omega = \frac{{z - 1}}{{z + 1}}$ (where $z \ne - 1)$, then ${\mathop{\rm Re}\nolimits} (\omega )$ is
If $a > 0$ and $z = \frac{{{{\left( {1 + i} \right)}^2}}}{{a - i}}$, has magnitude $\sqrt {\frac{2}{5}} $, then $\bar z$ is equal to:
Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$
If for complex numbers ${z_1}$ and ${z_2}$, $arg({z_1}/{z_2}) = 0,$ then $|{z_1} - {z_2}|$ is equal to
If $|z|\, = 4$ and $arg\,\,z = \frac{{5\pi }}{6},$then $z =$