4-1.Complex numbers
medium

Let $z,w$be complex numbers such that $\overline z + i\overline w = 0$and $arg\,\,zw = \pi $. Then arg z equals

A

$5\pi /4$

B

$\pi /2$

C

$3\pi /4$

D

$\pi /4$

(AIEEE-2004)

Solution

(c)Given that arg zw =$\pi $ …..$(i)$
$\bar z + i\bar \omega = 0 \Rightarrow \bar z = – i\bar \omega $$ \Rightarrow z = i\omega $$ \Rightarrow \omega = – iz$
From $(i)$, arg$( – i{z^2}) = \pi $
$arg\;( – i) + 2arg(z) = \pi $ ;

$\frac{{ – \pi }}{2} + 2\;arg(z) = \pi $
$2\,arg\,(z) = \frac{{3\pi }}{2}$;

$a\,rg(z) = \frac{{3\pi }}{4}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.