यदि $z$ पूर्णत: वास्तविक संख्या इस प्रकार हो कि ${\mathop{\rm Re}\nolimits} (z) < 0$, तब $arg(z)$=
$\pi $
$\frac{\pi }{2}$
$0$
$ - \frac{\pi }{2}$
यदि $z$ एक ऐसी सम्मिश्र संख्या हो कि ${z^2} = {(\bar z)^2}$, तो
यदि $|z|\, = 1$ तथा $\omega = \frac{{z - 1}}{{z + 1}}$ (जहाँ $z \ne - 1)$, तब ${\mathop{\rm Re}\nolimits} (\omega )$का मान होगा
माना दो सम्मिश्र संख्याओं $z$ तथा $w$ के लिए $w = zz -2 z +2,\left|\frac{ z + i }{ z -3 i }\right|=1$ हैं तथा $\operatorname{Re}( w )$ का मान निम्नतम है। तो $n \in N$ का निम्नतम मान, जिसके लिए $w ^{ n }$ वास्तविक है, बराबर ........... है |
यदि $arg\,z < 0$ तब $arg\,( - z) - arg\,(z)$ का मान होगा
यदि $|1-i|^x=2^x$ के हलों की संख्या $\alpha$ है तथा $\beta=\left(\frac{|\mathrm{z}|}{\arg (\mathrm{z})}\right)$ है, जहाँ $\mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^4\left(\frac{1-\sqrt{\pi} \mathrm{i}}{\sqrt{\pi}+\mathrm{i}}+\frac{\sqrt{\pi}-\mathrm{i}}{1+\sqrt{\pi} \mathrm{i}}\right), \mathrm{i}=\sqrt{-1}$ है, तो रेखा $4 x-3 y=7$ से बिंदु $(\alpha, \beta)$ की दूरी है................