- Home
- Standard 11
- Mathematics
4-1.Complex numbers
hard
If $z = x + iy$ satisfies $|z|-2=0$ and $|z-i|-|z+5 i|=0$, then
A
$x +2 y -4=0$
B
$x^{2}+y+4=0$
C
$x^{2}+y-4=0$
D
$x^{2}-y+3=0$
(JEE MAIN-2022)
Solution
$|z-i|-|z+5 i|=0$
$|x+(y-1) i|=|x+(y+5) i|$
$x^{2}+(y-1)^{2}=x^{2}+(y+5)^{2}$
$(y-1)^{2}-(y+5)^{2}=0$
$(2 y+4)(-6)=0$
$y=-2$
$\therefore x^{2}+(-2)^{2}=4$
$x=0$
$Z \equiv(0,-2)$, check options
Standard 11
Mathematics