7.Binomial Theorem
hard

જો $\sum_{ r =1}^{30} \frac{ r ^2\left({ }^{30} C _{ r }\right)^2}{{ }^{30} C _{ r -1}}=\alpha \times 2^{29}$, હોય તો  $\alpha$= __________ 

A$126$
B$626$
C$357$
D$465$
(JEE MAIN-2025)

Solution

$\sum_{ r =1}^{30} \frac{ r ^2\left({ }^{30} C _{ r }\right)^2}{{ }^{30} C _{ r -1}}$
$=\sum_{ r =1}^{30} r ^2\left(\frac{31- r }{ r }\right) \cdot \frac{30!}{ r !(30- r )!}$
$\left(\because \frac{{ }^{30} C _{ r }}{{ }^{30} C _{ r -1}}=\frac{30- r +1}{ r }=\frac{31- r }{ r }\right)$
$=\sum_{ r =1}^{30} \frac{(31- r ) 30!}{( r -1)!(30- r )!}$
$=30 \sum_{ r =1}^{30} \frac{(31- r ) 29!}{( r -1)!(30- r )!}$
$=30 \sum_{ r =1}^{30}(30- r +1)^{29} C _{30- r }$
$=30\left(\sum_{ r =1}^{30}(31- r )^{29} C _{30- r }+\sum_{ r =1}^{30}{ }^{29} C _{30- r }\right)$
$=30\left(29 \times 2^{28}+2^{29}\right)=30(29+2) 2^{28}$
$=15 \times 31 \times 2^{29}$
$=465\left(2^{29}\right)$
$\alpha=465$
Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.