આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો : નાભિઓ $(0,\,\pm 13),$ અનુબધ્ધ અક્ષની લંબાઈ $24$
વર્તૂળ $x^2 + y^2 - 8x = 0$ અને અતિવલય $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$બિંદુ $A$ અને $B$ આગળ છેદે છે. વર્તૂળ અને અતિવલયના ધન ઢાળ વાળા સામાન્ય સ્પર્શકનું સમીકરણ ......
ધારો કે $P(6, 3)$ અતિવલય $\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$પરનું બિંદુ છે. જો બિંદુ $P$ આગળનો અતિલંબ $x$-અક્ષને $(9, 0),$ આગળ છેદે, તો અતિવલયની ઉત્કેન્દ્રતા :
વર્તૂળ $x^2 + y^2 = 16$ ની જીવાના મધ્યબિંદુનો બિંદુપથ શોધો. જે અતિવલય $9x^2 - 16y^2 = 144$ નો સ્પર્શક હોય.
ધારો કે $P \left(x_0, y_0\right)$ એ અતિવલય $3 x^2-4 y^2=36$ પર નું રેખા. $3 x+2 y=1$ થી સૌથી નજીકનું બિંદુ છે.$\sqrt{2}\left(y_0-x_0\right)=..............$