If $\sqrt 3 + i = (a + ib)(c + id)$, then ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $ ${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ has the value

  • A

    $\frac{\pi }{3} + 2n\pi ,n \in I$

  • B

    $n\pi + \frac{\pi }{6},n \in I$

  • C

    $n\pi - \frac{\pi }{3},n \in I$

  • D

    $2n\pi - \frac{\pi }{3},n \in I$

Similar Questions

Which of the following are correct for any two complex numbers ${z_1}$ and ${z_2}$

The argument of the complex number $ - 1 + i\sqrt 3 $ is ............. $^\circ$

If $z=\frac{1}{2}-2 i$, is such that $|z+1|=\alpha z+\beta(1+i), i=\sqrt{-1}$ and $\alpha, \beta \in R \quad$, then $\alpha+\beta$ is equal to

  • [JEE MAIN 2024]

Lets $S=\{z \in C:|z-1|=1$ and $(\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2}\}$. Let $\mathrm{z}_1, \mathrm{z}_2$ $\in S$ be such that $\left|z_1\right|=\max _{z \in S}|z|$ and $\left|z_2\right|=\min _{z \in S}|z|$. Then $\left|\sqrt{2} z_1-z_2\right|^2$ equals :

  • [JEE MAIN 2024]

If $|z|\, = 4$ and $arg\,\,z = \frac{{5\pi }}{6},$then $z =$