4-1.Complex numbers
hard

જો $\sqrt 3 + i = (a + ib)(c + id)$, તો ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $ ${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ = . . .

A

$\frac{\pi }{3} + 2n\pi ,n \in I$

B

$n\pi + \frac{\pi }{6},n \in I$

C

$n\pi - \frac{\pi }{3},n \in I$

D

$2n\pi - \frac{\pi }{3},n \in I$

Solution

(b)We have $\sqrt 3 + i = (a + ib)(c + id)$
$\therefore ac – bd = \sqrt 3 $and $ad + bc = 1$
Now $tan^{-1}$ $\left( {\frac{b}{a}} \right) + {\tan ^{ – 1}}\left( {\frac{d}{c}} \right)$
$\begin{array}{l} = {\tan ^{ – 1}}\left( {\frac{{\frac{b}{a} + \frac{d}{c}}}{{1 – \frac{b}{a}.\frac{d}{c}}}} \right) = {\tan ^{ – 1}}\left( {\frac{{bc + ad}}{{ac – bd}}} \right) = {\tan ^{ – 1}}\left( {\frac{1}{{\sqrt 3 }}} \right)\\\end{array}$
$ = n\pi + \frac{\pi }{6},n \in I$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.