4-1.Complex numbers
hard

Let $S=\left\{Z \in C: \bar{z}=i\left(z^2+\operatorname{Re}(\bar{z})\right)\right\}$. Then $\sum_{z \in S}|z|^2$ is equal to

A

$\frac{7}{2}$

B

$4$

C

$\frac{5}{2}$

D

$3$

(JEE MAIN-2023)

Solution

Let $Z=x+$ iy, $x \in R, y \in R$

$x-i y=i\left(x^2-y^2+(2 x y) i+x\right)$

$x =- 2 x x$

$- y =- y ^2+ x ^2+ x$

$\Rightarrow x=0, y=-\frac{1}{2}(\text { from }(1))$

If $x \neq 0$, then $y =0,1$

If $y =-\frac{1}{2}$, then $x =\frac{1}{2},-\frac{3}{2}$

$Z =0+ i 0,0+ i , \frac{1}{2}-\frac{ i }{2},-\frac{3}{2}-\frac{ i }{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.