If $a,\;b,\;c$ are in $A.P.$, then $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}} = $
$1$
$2$
$3$
$4$
Let the sum of $n, 2 n, 3 n$ terms of an $A.P.$ be $S_{1}, S_{2}$ and $S_{3},$ respectively, show that $S_{3}=3\left(S_{2}-S_{1}\right)$
If three distinct number $a, b, c$ are in $G.P.$ and the equations $ax^2 + 2bc + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root, then which one of the following statements is correct?
There are $15$ terms in an arithmetic progression. Its first term is $5$ and their sum is $390$. The middle term is
Let $S_n$ denote the sum of first $n$ terms an arithmetic progression. If $S_{20}=790$ and $S_{10}=145$, then $S_{15}-$ $S_5$ is:
If ${S_n}$ denotes the sum of $n$ terms of an arithmetic progression, then the value of $({S_{2n}} - {S_n})$ is equal to