Gujarati
8. Sequences and Series
easy

If $a,\;b,\;c$ are in $A.P.$, then $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}} = $

A

$1$

B

$2$

C

$3$

D

$4$

Solution

(d) If $a,\;b,\;c$ are in $A.P.$ $ \Rightarrow $$2b = a + c$

So, $\frac{{{{(a – c)}^2}}}{{({b^2} – ac)}} = \frac{{{{(a – c)}^2}}}{{\left\{ {{{\left( {\frac{{a + c}}{2}} \right)}^2} – ac} \right\}}}$

$ = \frac{{{{(a – c)}^2}4}}{{[{a^2} + {c^2} + 2ac – 4ac]}} = \frac{{4{{(a – c)}^2}}}{{{{(a – c)}^2}}} = 4$.

Trick : Put $a = 1,\;b = 2,\;c = 3$,

then the required value is $\frac{4}{1} = 4$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.