If $a,\;b,\;c$ are in $A.P.$, then $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}} = $
$1$
$2$
$3$
$4$
The sum of all two digit numbers which, when divided by $4$, yield unity as a remainder is
If $a_1 , a_2, a_3, . . . . , a_n, ....$ are in $A.P.$ such that $a_4 - a_7 + a_{10}\, = m$, then the sum of first $13$ terms of this $A.P.$, is .............. $\mathrm{m}$
The sums of $n$ terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6 .$ Find the ratio of their $18^{\text {th }}$ terms.
If $< {a_n} >$ is an $A.P$. and $a_1 + a_4 + a_7 + .......+ a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to
If ${\log _5}2,\,{\log _5}({2^x} - 3)$ and ${\log _5}(\frac{{17}}{2} + {2^{x - 1}})$ are in $A.P.$ then the value of $x$ is :-