यदि $a,\;b,\;c$ समान्तर श्रेणी में हों, तो $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}}$ =
$1$
$2$
$3$
$4$
यदि श्रेणी $54 + 51 + 48 + .............$ का योग $513$ हो, तो पदों की संख्या है
मान लें कि $a_n$, एक अंकगणितीय श्रेढ़ी $(arithmetic\,progression)$ है, जहाँ $n \geq 1$ है और इस श्रेढ़ी का पहला पद $2$ और सार्व अंतर $(common\,difference)$ $4$ है। मान लें कि $M_n$ पहले $n$ पदों का औसत है, तब योग $\sum \limits_{n=1}^{10} M_n$ क्या होगा ?
एक राशि, दूसरी राशि की व्युत्क्रम है। यदि दोनों राशियों का समान्तर माध्य $\frac{{13}}{{12}}$ है, तो राशियाँ होंगी
श्रेणी $2\sqrt 2 + \sqrt 2 + 0 + .....$ का $8$ वाँ पद होगा
किसी समांतर श्रेढ़ी में पदों की संख्या सम है। इसके विषम पदों का योग $24$ है तथा सम पदों का योग $30$ है। यदि अंतिम पद, प्रथम पद से $10 \frac{1}{2}$ अधिक है, तो समांतर श्रेढ़ी में पदों की संख्या है