If three distinct number $a, b, c$ are in $G.P.$ and the equations $ax^2 + 2bc + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root, then which one of the following statements is correct?
$\frac{d}{a},\frac{e}{b},\frac{f}{c}$ are in $A.P$
$d, e, f$ are in $A.P$
$\frac{d}{a},\frac{e}{b},\frac{f}{c}$ are in $G.P$
$d, e, f$ are in $G.P$
The sum of all natural numbers between $1$ and $100$ which are multiples of $3$ is
The sequence $\frac{5}{{\sqrt 7 }}$, $\frac{6}{{\sqrt 7 }}$, $\sqrt 7 $, ....... is
Suppose that all the terms of an arithmetic progression ($A.P.$) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is $6: 11$ and the seventh term lies in between $130$ and $140$ , then the common difference of this $A.P.$ is
Let $S_n$ denote the sum of the first $n$ terms of an $A.P$.. If $S_4 = 16$ and $S_6 = -48$, then $S_{10}$ is equal to
Let $V_{\mathrm{r}}$ denote the sum of the first $\mathrm{r}$ terms of an arithmetic progression $(A.P.)$ whose first term is $\mathrm{r}$ and the common difference is $(2 \mathrm{r}-1)$. Let
$T_{\mathrm{I}}=V_{\mathrm{r}+1}-V_{\mathrm{I}}-2 \text { and } \mathrm{Q}_{\mathrm{I}}=T_{\mathrm{r}+1}-\mathrm{T}_{\mathrm{r}} \text { for } \mathrm{r}=1,2, \ldots$
$1.$ The sum $V_1+V_2+\ldots+V_n$ is
$(A)$ $\frac{1}{12} n(n+1)\left(3 n^2-n+1\right)$
$(B)$ $\frac{1}{12} n(n+1)\left(3 n^2+n+2\right)$
$(C)$ $\frac{1}{2} n\left(2 n^2-n+1\right)$
$(D)$ $\frac{1}{3}\left(2 n^3-2 n+3\right)$
$2.$ $\mathrm{T}_{\mathrm{T}}$ is always
$(A)$ an odd number $(B)$ an even number
$(C)$ a prime number $(D)$ a composite number
$3.$ Which one of the following is a correct statement?
$(A)$ $Q_1, Q_2, Q_3, \ldots$ are in $A.P.$ with common difference $5$
$(B)$ $\mathrm{Q}_1, \mathrm{Q}_2, \mathrm{Q}_3, \ldots$ are in $A.P.$ with common difference $6$
$(C)$ $\mathrm{Q}_1, \mathrm{Q}_2, \mathrm{Q}_3, \ldots$ are in $A.P.$ with common difference $11$
$(D)$ $Q_1=Q_2=Q_3=\ldots$
Give the answer question $1,2$ and $3.$