If $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, where $a , b , c$ are in $A.P.$ and $|a| < 1,|b| < 1,|c| < 1$, $abc \neq 0$, then
$x, y, z$ are in $A.P.$
$\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in $A.P.$
$x, y, z$ are in $G.P.$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1-(a+b+c)$
What is the $20^{\text {th }}$ term of the sequence defined by
$a_{n}=(n-1)(2-n)(3+n) ?$
Let $a_1, a_2, a_3, \ldots$ be an arithmetic progression with $a_1=7$ and common difference $8$ . Let $T_1, T_2, T_3, \ldots$ be such that $T_1=3$ and $T_{n+1}-T_n=a_n$ for $n \geq 1$. Then, which of the following is/are $TRUE$ ?
$(A)$ $T_{20}=1604$
$(B)$ $\sum_{ k =1}^{20} T_{ k }=10510$
$(C)$ $T_{30}=3454$
$(D)$ $\sum_{ k =1}^{30} T_{ k }=35610$
If $f(x + y,x - y) = xy\,,$ then the arithmetic mean of $f(x,y)$ and $f(y,x)$ is
If $< {a_n} >$ is an $A.P$. and $a_1 + a_4 + a_7 + .......+ a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to
The arithmetic mean of first $n$ natural number