8. Sequences and Series
medium

If $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, where $a , b , c$ are in $A.P.$ and $|a| < 1,|b| < 1,|c| < 1$, $abc \neq 0$, then

A

$x, y, z$ are in $A.P.$

B

$\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in $A.P.$

C

$x, y, z$ are in $G.P.$

D

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1-(a+b+c)$

(JEE MAIN-2022)

Solution

$x =1+ a + a ^{2}=\ldots \ldots \ldots .$

$x=\frac{1}{1-a} \Rightarrow a=1-\frac{1}{x}$

$y=\frac{1}{1-b} \Rightarrow b=1-\frac{1}{y}$

$z=\frac{1}{1-c} \Rightarrow c=1-\frac{1}{z}$

$a , b , c$ are in $A.P.$

$\Rightarrow 1-\frac{1}{x}, 1-\frac{1}{y}, 1-\frac{1}{z}$ are in $A.P.$

$\Rightarrow-\frac{1}{x},-\frac{1}{y},-\frac{1}{z}$ are in $A.P.$

$\Rightarrow \frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in $A.P.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.