8. Sequences and Series
medium

If ${\log _3}2,\;{\log _3}({2^x} - 5)$ and ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ are in $A.P.$, then $x$ is equal to

A

$1,\;\frac{1}{2}$

B

$1,\;\frac{1}{3}$

C

$1,\;\frac{3}{2}$

D

None of these

(IIT-1990)

Solution

(d) ${\log _3}2,\;{\log _3}({2^x} – 5)$ and ${\log _3}\left( {{2^x} – \frac{7}{2}} \right)$ are in $A.P.$

$ \Rightarrow $$2{\log _3}({2^x} – 5) = {\log _3}\left[ {(2)\,\left( {{2^x} – \frac{7}{2}} \right)} \right]$

$ \Rightarrow $ ${({2^x} – 5)^2} = {2^{x + 1}} – 7$

$ \Rightarrow $${2^{2x}} – 12\;.\;{2^x} – 32 = 0$

$ \Rightarrow $ $x = 2,\;3$

But $x = 2$ does not hold, hence $x = 3$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.