यदि ${\log _3}2,\;{\log _3}({2^x} - 5)$व ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ समान्तर श्रेणी में हों, तो $x$ के मान होंगे  

  • [IIT 1990]
  • A

    $1,\;\frac{1}{2}$

  • B

    $1,\;\frac{1}{3}$

  • C

    $1,\;\frac{3}{2}$

  • D

    इनमें से कोई नहीं

Similar Questions

मान लें कि प्राकृत संख्याएँ $a, b, c, d, e$ एक अंकगणितीय श्रेढ़ी $(arithmetic\,\,progression)$ में इस प्रकार हैं कि $a+b+c+d+e$ एक पूर्णांक का घन $(cube)$ है तथा $b+c+d$ एक पूर्णांक का वर्ग है। तब $c$ संख्या में न्यूनतम अंक का मान है

  • [KVPY 2013]

माना $\mathrm{a}_1, \mathrm{a}_2, \ldots \ldots, \mathrm{a}_{\mathrm{n}}$  $A.P.$ में हैं। यदि $\mathrm{a}_5=2 \mathrm{a}_7$ तथा $\mathrm{a}_{11}=18$ है, तो $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ बराबर है_________.

  • [JEE MAIN 2023]

यदि ${S_n} = nP + \frac{1}{2}n(n - 1)Q$, जहाँ ${S_n}$ समान्तर श्रेणी के प्रथम $n$ पदों का योग दर्शाता है, तब सार्वअन्तर है

समांतर श्रेणी $-6,-\frac{11}{2},-5, \ldots$ के कितने पदों का योगफल $-25$ है ?

चार संख्यायें समान्तर श्रेणी में हैं। यदि प्रथम तथा अंतिम पदों का योग $8$ है तथा दोनों मध्य पदों का गुणनफल $15$ है, तो श्रेणी की न्यूनतम संख्या होगी