The ratio of the sums of $m$ and $n$ terms of an $A.P.$ is $m^{2}: n^{2} .$ Show that the ratio of $m^{ th }$ and $n^{ th }$ term is $(2 m-1):(2 n-1)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively. According to the given condition,

$\frac{{{\rm{ Sum}}\,\,{\rm{of }}\,\,m\,\,{\rm{ terms }}}}{{{\rm{ Sum }}\,\,{\rm{of}}\,{\rm{ }}n{\rm{ }}\,\,{\rm{terms }}}} = \frac{{{m^2}}}{{{n^2}}}$

$\Rightarrow \frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}$

$\Rightarrow \frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n}$        ........$(1)$

Putting $m=2 m-1$ and $n=2 n-1,$ we obtain

$\frac{2 a+(2 m-2) d}{2 a+(2 n-2) d}=\frac{2 m-1}{2 n-1}$

$\Rightarrow \frac{a+(m-1) d}{a+(n-1) d}=\frac{2 m-1}{2 n-1}$         ..........$(2)$

$\frac{{{m^{th}}\,\,{\rm{ term}}\,\,{\rm{ of}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}}{{{n^{{\rm{th }}}}\,\,{\rm{ term }}\,\,{\rm{of}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}} = \frac{{a + (m - 1)d}}{{a + (n - 1)d}}$

From $(2)$ and $(3),$ we obtain

$\frac{m^{H h} \text { termof A.P. }}{n^{t h} \text { termof A.P. }}=\frac{2 m-1}{2 n-1}$

Thus, the given result is proved.

Similar Questions

If  ${\log _5}2,\,{\log _5}({2^x} - 3)$ and  ${\log _5}(\frac{{17}}{2} + {2^{x - 1}})$ are in $A.P.$ then the value of $x$ is :-

If ${a_1},\;{a_2},\,{a_3},......{a_{24}}$ are in arithmetic progression and ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$, then ${a_1} + {a_2} + {a_3} + ........ + {a_{23}} + {a_{24}} = $

Let $a_n, n \geq 1$, be an arithmetic progression with first term $2$ and common difference $4$ . Let $M_n$ be the average of the first $n$ terms. Then the sum $\sum \limits_{n=1}^{10} M_n$ is

  • [KVPY 2019]

If sum of $n$ terms of an $A.P.$ is $3{n^2} + 5n$ and ${T_m} = 164$ then $m = $

If $\frac{1}{{p + q}},\;\frac{1}{{r + p}},\;\frac{1}{{q + r}}$ are in $A.P.$, then