The ratio of the sums of $m$ and $n$ terms of an $A.P.$ is $m^{2}: n^{2} .$ Show that the ratio of $m^{ th }$ and $n^{ th }$ term is $(2 m-1):(2 n-1)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively. According to the given condition,

$\frac{{{\rm{ Sum}}\,\,{\rm{of }}\,\,m\,\,{\rm{ terms }}}}{{{\rm{ Sum }}\,\,{\rm{of}}\,{\rm{ }}n{\rm{ }}\,\,{\rm{terms }}}} = \frac{{{m^2}}}{{{n^2}}}$

$\Rightarrow \frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}$

$\Rightarrow \frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n}$        ........$(1)$

Putting $m=2 m-1$ and $n=2 n-1,$ we obtain

$\frac{2 a+(2 m-2) d}{2 a+(2 n-2) d}=\frac{2 m-1}{2 n-1}$

$\Rightarrow \frac{a+(m-1) d}{a+(n-1) d}=\frac{2 m-1}{2 n-1}$         ..........$(2)$

$\frac{{{m^{th}}\,\,{\rm{ term}}\,\,{\rm{ of}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}}{{{n^{{\rm{th }}}}\,\,{\rm{ term }}\,\,{\rm{of}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}} = \frac{{a + (m - 1)d}}{{a + (n - 1)d}}$

From $(2)$ and $(3),$ we obtain

$\frac{m^{H h} \text { termof A.P. }}{n^{t h} \text { termof A.P. }}=\frac{2 m-1}{2 n-1}$

Thus, the given result is proved.

Similar Questions

Let $a_{1}, a_{2}, \ldots \ldots, a_{21}$ be an $A.P.$ such that $\sum_{n=1}^{20} \frac{1}{a_{n} a_{n+1}}=\frac{4}{9}$. If the sum of this AP is $189,$ then  $a_{6} \mathrm{a}_{16}$ is equal to :

  • [JEE MAIN 2021]

The sum of $24$ terms of the following series $\sqrt 2 + \sqrt 8 + \sqrt {18} + \sqrt {32} + .........$ is

If $\alpha ,\;\beta ,\;\gamma $ are the geometric means between $ca,\;ab;\;ab,\;bc;\;bc,\;ca$ respectively where $a,\;b,\;c$ are in A.P., then ${\alpha ^2},\;{\beta ^2},\;{\gamma ^2}$ are in

Four numbers are in arithmetic progression. The sum of first and last term is $8$ and the product of both middle terms is $15$. The least number of the series is

The sixth term of an $A.P.$ is equal to $2$, the value of the common difference of the $A.P.$ which makes the product ${a_1}{a_4}{a_5}$ least is given by