यदि किसी समांतर श्रेणी का $m$ वाँ पद $n$ तथा $n$ वाँ पद $m,$ जहाँ $m \neq n,$ हो तो $p$ वाँ पद ज्ञात कीजिए।
We have $a_{m}=a+(m-1) d=n,$ ......$(1)$
and $\quad a_{n}=a+(n-1) d=m$ .........$(2)$
Solving $(1)$ and $(2),$ we get
$(m-n) d=n-m,$ or $d=-1,$ ...........$(3)$
and $\quad a=n+m-1$ ...........$(4)$
Therefore $\quad a_{p}=a+(p-1) d$
$=n+m-1+(p-1)(-1)=n+m-p$
Hence, the $p^{\text {th }}$ term is $n+m-p$
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=n \frac{n^{2}+5}{4}$
यदि श्रेणी $\sqrt{3}+\sqrt{75}+\sqrt{243}+\sqrt{507}+\ldots$ के प्रथम $n$ पदों का योग $435 \sqrt{3}$ है, तो $n$ बराबर है
यदि श्रेणियों $63 + 65 + 67 + 69 + .........$ तथा $3 + 10 + 17 + 24 + ......$ के $m$ वें पद बराबर हों, तो $m = $
यदि ${a^2},\;{b^2},\;{c^2}$ समान्तर श्रेणी में हों, तो ${(b + c)^{ - 1}},\;{(c + a)^{ - 1}}$ व ${(a + b)^{ - 1}}$ होंगे
$250$ से $1000 $ तक की संख्यायें जो $3$ से विभाजित हों, का योग होगा