यदि $a_m$ समान्तर श्रेणी के $m$ वें पद को प्रदर्शित करता हो, तब $a_m$ का मान होगा
$\frac{2}{{{a_{m + k}} + {a_{m - k}}}}$
$\frac{{{a_{m + k}} - {a_{m - k}}}}{2}$
$\frac{{{a_{m + k}} + {a_{m - k}}}}{2}$
इनमें से कोई नहीं
माना समांतर श्रेढी $3,7,11, \ldots \ldots$ के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $40<\left(\frac{6}{\mathrm{n}(\mathrm{n}+1)} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}\right)<42$ है, तो $\mathrm{n}$ बराबर है .............
यदि समीकरण ${x^3} - 12{x^2} + 39x - 28 = 0$ के मूल समान्तर श्रेणी में हों, तो श्रेणी का सार्वान्तर होगा
यदि किसी श्रेणी के प्रथम $n$ पदों का योगफल $5{n^2} + 2n$ हो, तो उसका द्वितीय पद है|
तीन समान्तर श्रेणियों के $n$ पदों के योगफल${S_1},\;{S_2},\;{S_3}$ हैं जिनके प्रथम पद $1$ और सार्वअन्तर क्रमश: $1, 2, 3$ हैं, तो सत्य सम्बन्ध होगा
यदि $n$ प्राकृत संख्या है और श्रेणी $n+2 n+3 n+\cdots+99 n$ का मान एक पूर्ण वर्ग है, तो ऐसे लघुत्तम $n$ के वर्ग, अर्थात $n^2$ में अंको की संख्या होगी :