एक आदमी ने एक बैंक में $10000$ रुपये $5 \%$ वार्षिक साधारण ब्याज पर जमा किया। जब से रकम बैंक में जमा की गई तब से, $15$ वें वर्ष में उसके खातें में कितनी रकम हो गई, तथा $20$ वर्षो बाद कुल कितनी रकम हो गई, ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that the man deposited $Rs.$ $10000$ in a bank at the rate of $5 \%$ simple interest annually.

$=\frac{5}{100} \times Rs .10000= Rs .500$

$\therefore$ Interest in first year $10000+\underbrace{500+500+\ldots+500}_{14 \text { times }}$

Amount in $15^{\text {th }}$ year

$= Rs . 10000+14 \times Rs .500$

$= Rs .10000+ Rs .7000$

$= Rs .17000$

Amount after $20$ years $= Rs .10000+\underbrace{500+500+\ldots+500}_{20 \text { times }}$

$= Rs .10000+20 \times Rs .500$

$= Rs .10000+ Rs .10000$

$=R s .20000$

Similar Questions

यदि ${\log _3}2,\;{\log _3}({2^x} - 5)$व ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ समान्तर श्रेणी में हों, तो $x$ के मान होंगे  

  • [IIT 1990]

यदि श्रेणी $54 + 51 + 48 + .............$ का योग $513$ हो, तो पदों की संख्या है

अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए

$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1,$ जहाँ $n>2$

माना कि किसी समांतर श्रेणी के $n, 2 n,$ तथा $3 n$ पदों का योगफल क्रमशः $S _{1}, S _{2}$ तथा $S _{3}$ है तो दिखाइए कि $S _{3}=3\left( S _{2}- S _{1}\right)$

अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है

$a_{n}=\frac{n}{n+1}$