$5$ और $26$ के बीच ऐसी $5$ संख्याएँ डालिए ताकि प्राप्त अनुक्रम समांतर श्रेणी बन जाए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A_{1}, A_{2}, A_{3}, A_{4}$ and $A_{5}$ be five numbers between $8$ and $26$ such that $8, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, 26$ is an $A.P.$

Here, $a=8, b=26, n=7$

Therefore, $26=8+(7-1) d$

$\Rightarrow 6 d=26-8=18$

$\Rightarrow d=3$

$A_{1}=a+d=8+3=11$

$A_{2}=a+2 d=8+2 \times 3=8+6=14$

$A_{3}=a+3 d=8+3 \times 3=8+9=17$

$A_{4}=a+4 d=8+4 \times 3=8+12=20$

$A_{5}=a+5 d=8+5 \times 3=8+15=23$

Thus, the required five numbers between $8$ and $26$ are $11,14,17,20$ and $23 .$

Similar Questions

यदि $a{x^2} + bx + c = 0$ के मूलों का योग उनके व्युत्क्रम के वर्गों के योग के बराबर हो, तो $\frac{c}{a},\frac{a}{b},\frac{b}{c}$ होंगे

भिन्न $A.P.$ बनाई गई हैं, जिनके प्रथम पद $100$ , अंतिम पद $199$ तथा सार्व अंतर पुर्णांक हैं। इस प्रकार की सभी $A.P.$, जिनमें कम से कम $3$ पद तथा अधिक से अधिक $33$ पद हैं, के सार्व अंतरों का योगफल है

  • [JEE MAIN 2022]

यदि $a$ और $b$के बीच का समान्तर माध्य $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$है, तो $n$  का मान होगा

यदि एक समान्तर श्रेणी का प्रथम पद  $2$ तथा सार्वअन्तर $4$ हो, तो उसके $40$ पदों का योग होगा|

चार संख्यायें समान्तर श्रेणी में हैं। यदि प्रथम तथा अंतिम पदों का योग $8$ है तथा दोनों मध्य पदों का गुणनफल $15$ है, तो श्रेणी की न्यूनतम संख्या होगी