यदि किसी समकोण त्रिभुज की भुजायें समान्तर श्रेणी में हों, तो भुजायें समानुपाती होंगी
$1:2:3$
$2:3:4$
$3:4:5$
$4:5:6$
यदि एक समान्तर श्रेढ़ी के प्रथम तीन पदों का योगफल तथा गुणनफल क्रमशः $33$ तथा $1155$ है, तो इसके $11$ वें पद का एक मान है
यदि ${S_k}$ किसी समान्तर श्रेणी के $k$ पदों का योगफल है जिसके प्रथम पद एवं सार्वअन्तर क्रमश: $‘a’$ व $‘d’$ हैं, तो $\frac{{{S_{kn}}}}{{{S_n}}}$,$n$ से स्वतंत्र होगा यदि
यदि $\frac{1}{{b - c}},\;\frac{1}{{c - a}},\;\frac{1}{{a - b}}$ समान्तर श्रेणी के क्रमागत पद हों, तो ${(b - c)^2},\;{(c - a)^2},\;{(a - b)^2}$ होंगे
एक समांतर श्रेणी के प्रथम चार पदों का योगफल $56$ है। अंतिम चार पदों का योगफल $112$ है। यदि इसका प्रथम पद $11$ है, तो पदों की संख्या ज्ञात कीजिए।
यदि $\frac{{3 + 5 + 7 + ......{\text{upto}}\;n\;{\text{terms}}}}{{5 + 8 + 11 + ....{\text{upto}}\;10\;{\text{terms}}}} = 7$, तो $n$ का मान है