यदि $a,b,c,d,e$ समान्तर श्रेणी में हों, तो $a + b + 4c - 4d + e$ का मान $a$ के पदों में होगा (यदि संभव हो तो)
$4a$
$2a$
$3$
इनमें से कोई नहीं
एक राशि, दूसरी राशि की व्युत्क्रम है। यदि दोनों राशियों का समान्तर माध्य $\frac{{13}}{{12}}$ है, तो राशियाँ होंगी
यदि तीन भिन्न संख्याएं $a, b, c$ गुणोत्तर श्रेढ़ी में है तथा समीकरण $ax ^{2}+2 bx + c =0$ और $dx ^{2}+2 ex +$ $f=0$ का एक उभयनिष्ठ मूल है, तो निम्न में से कौन-सा एक कथन सत्य है ?
दो समान्तर श्रेणीयों $3,7,11, \ldots .407$ एवं $2,9,16, \ldots .709$ में उभयनिष्ठ पदों की संख्या है।
एक निर्माता घोषित करता है कि उसकी मशीन जिसका मूल्य $15625$ रुपये है, हर वर्ष $20 \%$ की दर से उसका अवमूल्यन होता है। $5$ वर्ष बाद मशीन का अनुमानित मूल्य ज्ञात कीजिए।
मान लें कि $A B C D$ एक चतुर्भुज इस प्रकार है कि, चतुर्भुज के भीतर एक बिंदु $E$ है जो $A E=B E=C E=D E$ को संतुष्ट करता है. मान लें कि $\angle D A B, \angle A B C, \angle B C D$ एक समान्तर श्रेढ़ी $(AP)$ है. तब समुच्चय $\{\angle D A B, \angle A B C, \angle B C D\}$ का माध्य है: