If $n$ be odd or even, then the sum of $n$ terms of the series $1 - 2 + $ $3 - $$4 + 5 - 6 + ......$ will be

  • A

    $ - \frac{n}{2}$

  • B

    $\frac{{n - 1}}{2}$

  • C

    $\frac{{n + 1}}{2}$

  • D

    (a) and (c) both

Similar Questions

Find the $25^{th}$ common term of the following $A.P.'s$

$S_1 = 1, 6, 11, .....$

$S_2 = 3, 7, 11, .....$

If the first term of an $A.P.$ is $3$ and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first $20$ terms is equal to

  • [JEE MAIN 2025]

The number of common terms in the progressions $4,9,14,19, \ldots \ldots$, up to $25^{\text {th }}$ term and $3,6,9,12$, up to $37^{\text {th }}$ term is :

  • [JEE MAIN 2024]

Maximum value of sum of arithmetic progression $50, 48, 46, 44 ........$ is :-

Let $a_n$ be a sequence such that $a_1 = 5$ and $a_{n+1} = a_n + (n -2)$ for all $n \in N$, then $a_{51}$ is