If $n$ be odd or even, then the sum of $n$ terms of the series $1 - 2 + $ $3 - $$4 + 5 - 6 + ......$ will be
$ - \frac{n}{2}$
$\frac{{n - 1}}{2}$
$\frac{{n + 1}}{2}$
(a) and (c) both
If $A$ be an arithmetic mean between two numbers and $S$ be the sum of $n$ arithmetic means between the same numbers, then
Find the sum to $n$ terms of the $A.P.,$ whose $k^{\text {th }}$ term is $5 k+1$
If ${a_1},\;{a_2},............,{a_n}$ are in $A.P.$ with common difference , $d$, then the sum of the following series is $\sin d(\cos {\rm{ec}}\,{a_1}.co{\rm{sec}}\,{a_2} + {\rm{cosec}}\,{a_2}.{\rm{cosec}}\,{a_3} + ...........$$ + {\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_n})$
Shamshad Ali buys a scooter for $Rs$ $22000 .$ He pays $Rs$ $4000$ cash and agrees to pay the balance in annual instalment of $Rs$ $1000$ plus $10 \%$ interest on the unpaid amount. How much will the scooter cost him?
In an $A.P.,$ if $p^{\text {th }}$ term is $\frac{1}{q}$ and $q^{\text {th }}$ term is $\frac{1}{p},$ prove that the sum of first $p q$ terms is $\frac{1}{2}(p q+1),$ where $p \neq q$