- Home
- Standard 11
- Mathematics
If $n$ be odd or even, then the sum of $n$ terms of the series $1 - 2 + $ $3 - $$4 + 5 - 6 + ......$ will be
$ - \frac{n}{2}$
$\frac{{n - 1}}{2}$
$\frac{{n + 1}}{2}$
(a) and (c) both
Solution
(d) Given series $S = 1 – 2 + 3 – 4 + 5 – 6………$
Case $I$ : If $n$ is odd, say $2m + 1$
In this case, the number of positive terms
$ = \frac{1}{2}(n + 1) = \frac{1}{2}(2m + 1 + 1) = (m + 1)$
and the number of negative terms
$ = (2m + 1) – (m + 1) = m$
Then sum $ = [1 + 3 + 5 + ………{\rm{upto}}\,(m + 1)\;{\rm{terms]}}$
$ – [2 + 4 + 6…….{\rm{upto}}\;m\;{\rm{terms}}]$
$ = \frac{1}{2}(m + 1)[2 + (m + 1 – 1)2] – \frac{m}{2}[4 + (m – 1)2]$
$ = (m + 1)(m + 1 – m) = m + 1 = \frac{1}{2}(n + 1)$.
Case $II$ : If $n$ is even
Sum $ = \left( {1 + 3 + 5……{\rm{upto}}\;\frac{n}{2}\,{\rm{terms}}} \right)$
$ – \left( {2 + 4 + 6….{\rm{upto}}\,\frac{n}{{\rm{2}}}{\rm{terms}}} \right)$
$ = \frac{1}{2}.\;\frac{n}{2}\left[ {2 + \left( {\frac{n}{2} – 1} \right)2} \right] – \frac{1}{2}.\frac{n}{2}\left[ {4 + \left( {\frac{n}{2} – 1} \right)2} \right]$
$ = \frac{1}{4}n[n – (n + 2)] = – \frac{n}{2}$.
Trick : Put $n = \;3,\,4$
${S_1} = 2,\;{S_3} = – \,2,$
which the option $(a)$ and $(c)$ give for $n = 3,4$