If $n$ be odd or even, then the sum of $n$ terms of the series $1 - 2 + $ $3 - $$4 + 5 - 6 + ......$ will be
$ - \frac{n}{2}$
$\frac{{n - 1}}{2}$
$\frac{{n + 1}}{2}$
(a) and (c) both
Different $A.P.$'s are constructed with the first term $100$,the last term $199$,And integral common differences. The sum of the common differences of all such, $A.P$'s having at least $3$ terms and at most $33$ terms is.
The number of terms in an $A .P.$ is even ; the sum of the odd terms in it is $24$ and that the even terms is $30$. If the last term exceeds the first term by $10\frac{1}{2}$ , then the number of terms in the $A.P.$ is
If $\log 2,\;\log ({2^n} - 1)$ and $\log ({2^n} + 3)$ are in $A.P.$, then $n =$
If $a_1, a_2, a_3, .... a_{21}$ are in $A.P.$ and $a_3 + a_5 + a_{11}+a_{17} + a_{19} = 10$ then the value of $\sum\limits_{r = 1}^{21} {{a_r}} $ is
If $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ are in $A.P.$ then $x$ equals