If $n$ be odd or even, then the sum of $n$ terms of the series $1 - 2 + $ $3 - $$4 + 5 - 6 + ......$ will be
$ - \frac{n}{2}$
$\frac{{n - 1}}{2}$
$\frac{{n + 1}}{2}$
(a) and (c) both
A man starts repaying a loan as first instalment of $Rs.$ $100 .$ If he increases the instalment by $Rs \,5$ every month, what amount he will pay in the $30^{\text {th }}$ instalment?
In an $A.P.,$ the first term is $2$ and the sum of the first five terms is one-fourth of the next five terms. Show that $20^{th}$ term is $-112$
Let $AP ( a ; d )$ denote the set of all the terms of an infinite arithmetic progression with first term a and common difference $d >0$. If $\operatorname{AP}(1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap \operatorname{AP}(3 ; 7)=\operatorname{AP}( a ; d )$ then $a + d$ equals. . . . .
The number of terms of the $A.P. 3,7,11,15...$ to be taken so that the sum is $406$ is
If the ratio of the sum of $n$ terms of two $A.P.'s$ be $(7n + 1):(4n + 27)$, then the ratio of their ${11^{th}}$ terms will be