- Home
- Standard 11
- Mathematics
8. Sequences and Series
hard
Suppose we have an arithmetic progression $a_1, a_2, \ldots a_n, \ldots$ with $a_1=1, a_2-a_1=5$. The median of the finite sequence $a_1, a_2, \ldots, a_k$, where $a_k \leq 2021$ and $a_{k+1} > 2021$ is
A
$1011$
B
$1011.5$
C
$1013.5$
D
$1016$
(KVPY-2021)
Solution
(a)
$a_1, a_2, a_3, \ldots a_n$ are in A.P.
$a_1=2, a_2-a_1=5=d$
$a_k \leq 2021$
$a_1+(k-1) d \leq 2021$
$k \leq 405$
median of $a_1, a_2, \ldots, a_{405}$
is $a_{203}=a_1+(203-1) d=1011$
Standard 11
Mathematics