If ${a_1},\;{a_2},\;{a_3}.......{a_n}$ are in $A.P.$, where ${a_i} > 0$ for all $i$, then the value of $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}}  + \sqrt {{a_n}} }} = $

  • [IIT 1982]
  • A

    $\frac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}$

  • B

    $\frac{{n + 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}$

  • C

    $\frac{{n - 1}}{{\sqrt {{a_1}} - \sqrt {{a_n}} }}$

  • D

    $\frac{{n + 1}}{{\sqrt {{a_1}} - \sqrt {{a_n}} }}$

Similar Questions

Let ${S_1},{S_2},......,{S_{101}}$ be the consecutive terms of an $A.P$ . If $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ and ${S_1} + {S_{101}} = 50$ , then $\left| {{S_1} - {S_{101}}} \right|$ is equal to

If $< {a_n} >$ is an $A.P$. and $a_1 + a_4 + a_7 + .......+ a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to

The sum of the first four terms of an $A.P.$ is $56$. The sum of the last four terms is $112$. If its first term is $11$, the number of terms is

The sides of a right angled triangle are in arithmetic progression. If the triangle has area $24$ , then what is the length of its smallest side ?

  • [IIT 2017]

In an $A.P.,$ the first term is $2$ and the sum of the first five terms is one-fourth of the next five terms. Show that $20^{th}$ term is $-112$