8. Sequences and Series
medium

यदि ${a_1},\;{a_2},\;{a_3}.......{a_n}$ स.श्रे. में हों,(जहाँ $i$ के सभी मानों के लिये ${a_i} > 0$),  तब $\frac{1}{{\sqrt {{a_1}}  + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}}  + \sqrt {{a_3}} }} + $$........ + \frac{1}{{\sqrt {{a_{n - 1}}}  + \sqrt {{a_n}} }}$ का मान होगा

A

$\frac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}$

B

$\frac{{n + 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}$

C

$\frac{{n - 1}}{{\sqrt {{a_1}} - \sqrt {{a_n}} }}$

D

$\frac{{n + 1}}{{\sqrt {{a_1}} - \sqrt {{a_n}} }}$

(IIT-1982)

Solution

(a) दिये अनुसार ${a_2} – {a_1} = {a_3} – {a_2} = ……. = {a_n} – {a_{n – 1}} = d$,

जहाँ $d$ समान्तर श्रेणी का सार्वअन्तर है एवं

 ${a_n} = {a_1} + (n – 1)d$       

अत: प्रत्येक पद का परिमेयीकरण करने पर,

 $\frac{1}{{\sqrt {{a_2}}  + \sqrt {{a_1}} }} + \frac{1}{{\sqrt {{a_3}}  + \sqrt {{a_2}} }} + …. + \frac{1}{{\sqrt {{a_n}}  + \sqrt {{a_{n – 1}}} }}$

  $ = \frac{{\sqrt {{a_2}}  – \sqrt {{a_1}} }}{{{a_2} – {a_1}}} + \frac{{\sqrt {{a_3}}  – \sqrt {{a_2}} }}{{{a_3} – {a_2}}} + ….. + \frac{{\sqrt {{a_n}}  – \sqrt{{a_{n – 1}}} }}{{{a_n} – {a_{n – 1}}}}$

 $ = \frac{1}{d}\left\{ {\sqrt {{a_2}}  – \sqrt {{a_1}}  + \sqrt {{a_3}}  – \sqrt {{a_2}}  + …… + \sqrt {{a_n}}  – \sqrt {{a_{n – 1}}} } \right\}$

  $ = \frac{1}{d}\left\{ {\sqrt {{a_n}}  – \sqrt {{a_1}} } \right\} = \frac{1}{d}\left( {\frac{{{a_n} – {a_1}}}{{\sqrt {{a_n}}  + \sqrt {{a_1}} }}} \right)$

 $ = \frac{1}{d}\left\{ {\frac{{(n – 1)d}}{{\sqrt {{a_n}}  + \sqrt {{a_1}} }}} \right\} = \frac{{n – 1}}{{\sqrt {{a_n}}  + \sqrt {{a_1}} }}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.