यदि ${a_1},\;{a_2},\;{a_3}.......{a_n}$ स.श्रे. में हों,(जहाँ $i$ के सभी मानों के लिये ${a_i} > 0$), तब $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $$........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }}$ का मान होगा
$\frac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}$
$\frac{{n + 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}$
$\frac{{n - 1}}{{\sqrt {{a_1}} - \sqrt {{a_n}} }}$
$\frac{{n + 1}}{{\sqrt {{a_1}} - \sqrt {{a_n}} }}$
यदि $a_m$ समान्तर श्रेणी के $m$ वें पद को प्रदर्शित करता हो, तब $a_m$ का मान होगा
यदि किसी समांतर श्रेणी का $m$ वाँ पद $n$ तथा $n$ वाँ पद $m,$ जहाँ $m \neq n,$ हो तो $p$ वाँ पद ज्ञात कीजिए।
माना $\alpha, \beta$ तथा $\gamma$ तीन धनात्मक वास्तविक संख्याएं हैं। माना $f ( x )=\alpha x ^5+\beta x ^3+\gamma x , x \in R$ तथा $g : R \rightarrow R$ इस प्रकार हैं कि सभी $x \in R$ के लिए $g ( f ( x ))= x$ है। यदि $a _1, a _2, a _3, \ldots, a _n$ एक संमातर श्रेढ़ी में है, जिनका माध्य शुन्य है, तो $f \left( g \left(\frac{1}{ n } \sum \limits_{ i =1}^{ n } f \left( a _{ i }\right)\right)\right)$ का मान बराबर है :
एक राशि, दूसरी राशि की व्युत्क्रम है। यदि दोनों राशियों का समान्तर माध्य $\frac{{13}}{{12}}$ है, तो राशियाँ होंगी
दर्शाइए कि किसी समांतर श्रेणी के $(m+n)$ वें तथा $(m-n)$ वें पदों का योग $m$ वें पद का दुगुना है।