यदि ${a_1},\;{a_2},............,{a_n}$ एक समांतर श्रेणी में हैं, जिसका सार्वान्तर $d$ है, तब श्रेणी $\sin d(\cos {\rm{ec}}\,{a_1}.{\rm{cosec}}\,{a_2} + {\rm{cosec}}\,{a_2}.{\rm{cosec}}\,{a_3} + ...........$ $ + {\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_n})$
$\sec {a_1} - \sec {a_n}$
$\cot {a_1} - \cot {a_n}$
$\tan {a_1} - \tan {a_n}$
$c{\rm{osec}}\;{a_1} - {\rm{cosec}}\;{a_n}$
दी गई एक समांतर श्रेढ़ी के सभी पद धनपूर्णांक हैं। इसके प्रथम नौ पदों का योग $200$ से अधिक तथा $220$ से कम है। यदि इसका दूसरा पद $12$ है, तो इसका चौथा पद है
यदि $\frac{a}{b},\frac{b}{c},\frac{c}{a}$ हरात्मक श्रेणी में हों, तो
किसी समांतर श्रेढ़ी में पदों की संख्या सम है। इसके विषम पदों का योग $24$ है तथा सम पदों का योग $30$ है। यदि अंतिम पद, प्रथम पद से $10 \frac{1}{2}$ अधिक है, तो समांतर श्रेढ़ी में पदों की संख्या है
माना $\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{ n }}(i=1,2, \ldots, n$ के लिए $x_{i} \neq 0$ है) समांतर श्रेढ़ी में ऐसे हैं कि $x_{1}=4$ तथा $x_{21}=20$ है। यदि $n$ का न्यूनतम धनपूर्णांक मान जिसके लिए $x_{ n } >50$ है, तो $\sum_{i=1}^{ n }\left(\frac{1}{x_{i}}\right)$ बराबर है
माना कि एक समान्तर श्रेणी (arithmetic progression ($A.P.$)) के सभी पद धन पूर्णांक हैं । इस समान्तर श्रेणी में यदि पहले सात ($7$) पदों के योग और पहले ग्यारह ($11$) पदों के योग का अनुपात $6: 11$ है तथा सातवाँ पद $130$ और $140$ के बीच मं स्थित है, तब इस समान्तर श्रेणी के सार्व अन्तर (common difference) का मान है