यदि ${a_1},\;{a_2},............,{a_n}$ एक समांतर श्रेणी में हैं, जिसका सार्वान्तर $d$ है, तब श्रेणी $\sin d(\cos {\rm{ec}}\,{a_1}.{\rm{cosec}}\,{a_2} + {\rm{cosec}}\,{a_2}.{\rm{cosec}}\,{a_3} + ...........$ $ + {\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_n})$
$\sec {a_1} - \sec {a_n}$
$\cot {a_1} - \cot {a_n}$
$\tan {a_1} - \tan {a_n}$
$c{\rm{osec}}\;{a_1} - {\rm{cosec}}\;{a_n}$
यदि $a,\;b,\;c,\;d,\;e,\;f$ समान्तर श्रेणी में हों, तो $e - c$ का मान होगा
दो समान्तर श्रेणीयों $3,7,11, \ldots .407$ एवं $2,9,16, \ldots .709$ में उभयनिष्ठ पदों की संख्या है।
यदि $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}, a$ तथा $b$ के मध्य समांतर माध्य हो तो $n$ का मान ज्ञात कीजिए।
माना भिन्न पदों वाली समांतर श्रेढ़ी (non-constant $A.P.$) $a _{1}, a _{2}$, $a _{3}, \ldots \ldots \ldots \ldots . . .$ के प्रथम $n$ पदों का योगफल $50 n +\frac{ n ( n -7)}{2} A$ है, जहाँ $A$ एक अचर है। यदि इस समांतर श्रेढ़ी का सार्वअंतर $d$ है, तो क्रमित युग्म $\left( d , a _{50}\right)$ बराबर है $:$
माना $a , b$ दो शून्येत्तर वास्तविक संख्याएँ हैं। एक समीकरण $x^2-8 a x+2 a=0$ के मूल $p$ तथा $r$ हैं और समीकरण $x ^2+12 bx +6 b =0$, के मूल $q$ तथा $s$ हैं, इस प्रकार कि $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ A.P. में हैं,तो $a^{-1}-b^{-1}$ बराबर है $................$