किसी समांतर श्रेणी का $p$ वाँ पद $\frac{1}{q}$ तथा $q$ वाँ पद $\frac{1}{p}$, हो तो सिद्ध कीजिए कि प्रथम $p q$ पदों का योग $\frac{1}{2}(p q+1)$ होगा जहाँ $p \neq q$
It is known that the general term of an $A.P.$ is $a_{n}=a+(n-1) d$
$\therefore$ According to the given information,
$p^{\text {th }}$ term $=a_{p}=a+(p-1) d=\frac{1}{q}$ ......$(1)$
$q^{ th }$ term $=a_{q}=a+(q-1) d=\frac{1}{p}$ ........$(2)$
Subtracting $(2)$ from $(1),$ we obtain
$(p-1) d-(q-1) d=\frac{1}{q}-\frac{1}{p}$
$\Rightarrow(p-1-q+1) d=\frac{p-q}{p q}$
$\Rightarrow(p-q) d=\frac{p-q}{p q}$
$\Rightarrow d=\frac{1}{p q}$
Putting the value of $d$ in $(1),$ we obtain $a+(p-1) \frac{1}{p q}=\frac{1}{q}$
$\Rightarrow a=\frac{1}{q}-\frac{1}{q}+\frac{1}{p q}=\frac{1}{p q}$
$\therefore {S_{pq}} = \frac{{pq}}{2}[2a + (pq - 1)d]$
$=\frac{p q}{2}\left[\frac{2}{p q}+(p q-1) \frac{1}{p q}\right]$
$=1+\frac{1}{2}(p q-1)$
$=\frac{1}{2} p q+1-\frac{1}{2}=\frac{1}{2} p q+\frac{1}{2}$
$=\frac{1}{2}(p q+1)$
Thus, the sum of first pq terms of the $A.P.$ is $=\frac{1}{2}(p q+1)$
यदि किसी श्रेणी के प्रथम $n$ पदों का योगफल $5{n^2} + 2n$ हो, तो उसका द्वितीय पद है|
$100$ तथा $1000$ के मध्य उन सभी प्राकृत संख्याओं का योगफल ज्ञात कीजिए जो $5$ के गुणज हों।
श्रेणी $( - 8 + 18i),\,( - 6 + 15i),$ $( - 4 + 12i)$ $,......$ का कौन सा पद शुद्ध अधिकल्पित संख्या है
एक व्यक्ति ऋण का भुगतान $100$ रुपये की प्रथम किश्त से शुरू करता है। यदि वह प्रत्येक किश्त में $5$ रुपये प्रति माह बढ़ता है तो $30$ वीं किश्त की राशि क्या होगी ?
यदि समीकरण ${x^3} - 12{x^2} + 39x - 28 = 0$ के मूल समान्तर श्रेणी में हों, तो श्रेणी का सार्वान्तर होगा