$100$ व $1000$ के बीच $9$ से विभाजित संख्याओं का योग है
$55350$
$57228$
$97015$
$62140$
यदि समीकरण $a{x^2} + bx + c = 0$ के मूलों का योग उनके व्युत्क्रमों के वर्गों के योगफल के बराबर है, तो $b{c^2},\;c{a^2},\;a{b^2}$ होंगे
निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है
$a_{n}=4 n-3 ; a_{17}, a_{24}$
यदि ${S_n} = nP + \frac{1}{2}n(n - 1)Q$, जहाँ ${S_n}$ समान्तर श्रेणी के प्रथम $n$ पदों का योग दर्शाता है, तब सार्वअन्तर है
धनपूर्णांक के $5-$ टुपल्स $(tuples)$ $(a, b, c, d, e)$, इस प्रकार हैं कि
$I$. $a, b, c, d, e$ उत्तल पंचकोण $(Convex\,pentagon)$ के डिग्री में कोणों के माप हैं ।
$II$. $a \leq b \leq c \leq d \leq e$
$III$. $a, b, c, d, e$ अंकगणितीय श्रेढ़ी मे हैं ।
ऐसे कितने $5-$ टुपल्स सभव है ?
माना $a_1, a_2, \ldots ., a_n, \ldots$ वास्तविक संख्याओं की एक समांतर श्रेढ़ी है। यदि इस श्रेढ़ी के प्रथम पाँच पदों के योग का, प्रथम नौ पदों के योग से अनुपात $5: 17$ है तथा $110 < a_{15} < 120$ है, तो इस श्रेढ़ी के प्रथम दस पदों का योग है -